深度学习认知架构的反表征主义转向
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

N02

基金项目:

国家社会科学基金重大项目(22&ZD045)


The Anti-Representationism Turn in Deep Learning Cognitive Architectures
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当代认知研究发展出了符号主义和联结主义两种不同的范式。符号主义的计算-表征是以思想 语言假说为基础的“句法图像”,具有内容与载体相分离、符号语境无关性等表征特征。深度学习是对 联结主义技术的创新和深化,其认知架构是具有分布式加工和叠加存储、语境敏感和原型提取学习等 特点的亚符号计算,表现出一系列的反表征特征,反映在深度网络中并不以明确的概念表征为对象的 操作,推动了认知哲学中反表征主义的兴起。在充分理解符号主义和深度学习认知架构表征方式的基 础上,探索二者在某种程度上的统一,也许是值得努力的目标。

    Abstract:

    Two different paradigms, symbolism and connectionism, have evolved from contemporary cognitive research. The computational?representation of symbolism is a "syntactic image" based on the language?of?thought hypothesis, which is featured by the separation between content and its carriers and by the context?independence of symbols. Deep learning has been an innovation and depth to connectionism technique, whose architectures are characterized as a kind of sub?symbol computation with such features as distributed processing and superposition storage, context?sensitivity, and prototype extraction, has demonstrated a series of anti?representational features which have been reflected by operations in deep networks that do not target explicit conceptual representations, and has driven the rise of anti?representationism in cognitive philosophy. Exploring unity between symbolism and deep learning architectures in some degree based on fully understanding their representational approaches may be a worthwhile goal.

    参考文献
    相似文献
    引证文献
引用本文

刘 伟,符 征.深度学习认知架构的反表征主义转向[J].长沙理工大学学报(社会科学版),2024,(4):54-60.
Liu Wei, Fu Zheng. The Anti-Representationism Turn in Deep Learning Cognitive Architectures[J]. Journal of Changsha University of Science & Technology Social Science,2024,(4):54-60.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-09
  • 出版日期:
文章二维码
您是第位访问者
长沙理工大学学报(社会科学版) ® 2024 版权所有
技术支持:北京勤云科技发展有限公司